MEMECAHKAN SOAL MATEMATIKA MENGENAI PEMBUKTIAN BAHWA ANGKA HASIL DIAKHIRI PALING TIDAK DIAKHIRI DENGAN DUA ANGKA NOL

MEMECAHKAN SOAL MATEMATIKA MENGENAI PEMBUKTIAN BAHWA ANGKA HASIL PALING TIDAK DIAKHIRI DENGAN DUA ANGKA NOL.

.

Ivan Taniputera.

17 Mei 2017.

.

Saya menemukan soal sebagai berikut:

.

“ Buktikan bahwa (81^100).(121^100)-1 hasilnya diakhiri paling tidak dengan dua angka 0.”

.

Saya akan memecahkan soal tersebut sebagai berikut.

.

(81^100).(121^100)-1 = ((9^2)^100).((11^2)^100)-1

= 99^200-1

= 99^200-1^200 [Satu dipangkatkan berapa saja tetap 1].

=((99)^2)^100 – ((1)^2)^100)

.

Kita akan menggunakan rumus:

.

p^a – q^a = (p-q)(p^(a-1) + (p^(a-2).q) + ………)

.

Jadi ((99^2)^100 – ((1^2)^100) = (99^2-1^2).((99^2)^99 + (99^2)^98.1 + …………)

.

Kita akan menggunakan rumus:

.

p^2-q^2 = (p+q).(p-q)

.

= (99 + 1).(99 – 1).((99^2)^99 + (99^2)^98.1 + …………)

= (100).(98).((99^2)^99 + (99^2)^98.1 + …………)

.

Perhatikan bahwa terdapat 100 sebagai faktor. Perkalian dengan 100 paling tidak akan memberikan hasil yang diakhiri dengan dua angka nol.

.

Sebagai tambahan, kita juga dapat menyimpulkan bahwa hasilnya pasti dapat dibagi atau merupakan kelipatan 98.

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s